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BV

BV formalism

Very general approach to the quantisation of classical field
theories
Needed in cases of open gauge algebras
Involves doubling the BRST field content
This doubling introduces a natural symplectic structure ⇒
Antibracket
The BRST operator is extended to a homological vector field
that is Hamiltonian wrt this symplectic structure ⇒ Master
equation
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L∞-algebra

Definition [hep-th/9206084] Zwiebach; [hep-th/9209099] Lada, Stasheff

An L∞-algebra (or homotopy Lie algebra) (L, µi ) is a differential graded
commutative algebra with a set of higher products that are graded totally
antisymmetric multilinear maps

µi : L× · · · × L︸ ︷︷ ︸
i-times

→ L, i ∈ N0

of degree 2− i which satisfy the homotopy Jacobi identities:∑
j+k=n

∑
σ

χ(σ; l1, . . . , ln)(−1)kµk+1(µj(lσ(1), . . . , lσ(j)), lσ(j+1), . . . , lσ(n)) = 0

li ∈ L.
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L∞-algebra

Special L∞-algebras

A cyclic L∞-algebra is an L∞-algebra with a graded symmetric non-degenerate
bilinear pairing

〈 · , · 〉L : L× L→ R

that satisfies the cyclicity condition:

〈l1, µi (l2, . . . , li+1)〉L = (−1)i+i(|l1|+|ln+1|)+|li+1|
∑i

j=1 |lj |〈li+1, µi (l1, . . . , li )〉L;

∀i ∈ N.

A tensor product L∞-algebra (L̂, µ̂i ) is the natural L∞-algebra induced by the
tensor product of an L∞-algebra (L, µi ) and a differential graded commutative
algebra (A, d).

Since a de Rham complex on a manifold M, (Ω•(M), d), is a differential graded
commutative algebra its tensor product with an L∞-algebra (L, µi ) will again
be an L∞-algebra (Ω•(M, L), µ′i )
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L∞-algebra

Tensored algebras relevant for BV

Gauge algebra Field theory algebra BV algebra

L L′ = Ω•(M, L) L̂ =C∞(L′[1])⊗ L′
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L∞-algebra

Field Theory from L∞

Action:
SBV[a] =

∑
i>0

1
(i + 1)!

〈a, µ̂i (a, . . . , a)〉L̂

BRST transformations:

QBVa = −
∑
i>1

1
i !
µ̂i (a, . . . , a)
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Yang-Mills theory
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Definition

Setup

smooth compact 4-dimensional manifold without boundary M

Lie group G with metric Lie algebra (g, [·, ·], 〈·, ·〉g)

inner product on Ω•(M): (α1, α2) =
∫
M α1 ∧ ∗α2 ⇒ induces

product on Ω•(M, g)
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Second order

Second order L∞ description

Spaces:

c ∈ A ∈ A† ∈ c† ∈

Ω0(M, g)
µ1=d−−−→ Ω1(M, g)

µ1=d∗d−−−−−→ Ω3(M, g)
µ1=d−−−→ Ω4(M, g)

Non-vanishing maps:

µ1(c) = dc, µ1(A) = d ∗ dA, µ1(A†) = dA†,

µ2(A1,A2) = d ∗ [A1,A2] + [A1, ∗dA2] + [A2, ∗dA1],

all other possible µ2 are just Lie brackets,

µ3(A1,A2,A3) = [A1, ∗[A2,A3]] + [A2, ∗[A3,A1]] + [A3, ∗[A1,A2]]
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Second order

Action

SBV[a] =
∑
i>0

1
(i + 1)!

〈a, µ̂i (a, . . . , a)〉L̂, a = c + A + A† + c†

µ1: ∫
M

〈A, d ∗ dA〉 =

∫
M

〈dA, ∗dA〉

µ2: ∫
M

〈A, d ∗ [A,A] + 2[A, ∗dA]〉 = 3
∫
M

〈dA, ∗[A,A]〉

µ3: ∫
M

〈A, 3[A, ∗[A,A]]〉 = 3
∫
M

〈[A,A], ∗[A,A]〉

Sclassic =

∫
M

1
2
〈F , ∗F 〉 F = dA +

1
2

[A,A]
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Second order

All other possible combinations with non-vanishing pairings are:

〈c†, µ2(c, c)〉, 〈A†, µ1(c)〉, 〈A†, µ2(A, c)〉, 〈A, µ2(A†, c)〉, 〈c, µ1(A†)〉, 〈c, µ2(c, c†)〉.

Combining into:

SBV = Sclassic + 〈A†, µ1(c)〉+ 〈A†, µ2(A, c)〉+
1
2
〈c†, µ2(c, c)〉

BRST transformations: QBVa = −
∑

i>1
1
i!
µ̂i (a, . . . , a).

For example take the ghost zero component:

−QBVA
†+O(c†,A†) = d∗dA+

1
2
d∗[A,A]+[A, ∗dA]+

1
2

[A, ∗[A,A]] = d∗F+[A, ∗F ]
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First order

First order L∞ description

Spaces:

Ω0(M, g)
µ1=d−−−→ Ω2

+(M, g)⊕Ω1(M, g)
µ1=(1+P+)+d−−−−−−−−−→ Ω2

+(M, g)⊕Ω3(M, g)
µ1=0+d−−−−−→ Ω4(M, g)

Non-vanishing maps:

µ1(c) = dc, µ1(A + B) = (P+B + P+dA) + dP+B, µ1(A†) = dA†,

µ2(A1 + B1,A2 + B2) = P+[A1,A2] + [A1,B2] + [A2,B1],

µ2(A + B,A† + B†) = [A,A†] + [B,B†]

all other possible µ2 are just Lie brackets.

Here ∗ induces the decomposition Ω2(M, g) = Ω2
+(M, g)⊕ Ω2

−(M, g) via the
projectors P± = 1

2 (1 + ∗): Ω2
±(M, g) = P±Ω2(M, g)
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First order

Action

µ1:∫
M

〈A+B+, µ1(A+B+)〉 =

∫
M

〈A+B+,B++P+dA+dB+〉 =

∫
M

2〈dA,B+〉+〈B+,B+〉

µ2:∫
M

〈A+B+, µ2(A+B+,A+B+)〉 =

∫
M

〈A+B+,P+[A,A]+2[A,B+]〉 =

∫
M

3〈B+, [A,A]〉

Sclassic =

∫
M

〈F ,B+〉+
1
2
〈B+,B+〉

Integrating out B+ this action is classically equivalent to the second order
formulation.
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Morphism

Morphism

We say a collection of multilinear, totally graded antisymmetric homogeneous
maps φi : L×i → L′ of degree 1− i , i ∈ N, is an L∞-morphism between two
L∞-algebras (L, µ) and (L′, µ′) if they satisfy:∑

j+k=n

∑
σ∈Sh(j ;n)

(−1)kχ(σ; l1, . . . , ln)φk+1(µj(lσ(1), . . . , lσ(j)), lσ(j+1), . . . , lσ(n)) =

=
∑

k1+···+kj=n

1
j!

∑
σ∈Sh(k1,...,kj−1;n)

χ(σ; l1, . . . , ln)ζ(σ; l1, . . . , ln)×

× µ′j(φk1(lσ(1), . . . , lσ(k1)), . . . , φkj (lσ(k1+···+kj−1+1), . . . , lσ(n)))

If φ1 induces an isomorphism of cohomologies H•µ1(L) ∼= H•µ′1
(L′) it is called a

quasi-isomorphism. Quasi-isomorphisms correspond to physically equivalent
systems.
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Examples

Simple example for scalar fields

Take two actions:

S =

∫
M

d4x
(

1
2ϕ(−�−m2)ϕ− λ

4!
ϕ4
)

S ′ =

∫
M

d4x

(
1
2ϕ(−�−m2)ϕ+ 1

2X
2 + 1

2

√
λ
3Xϕ

2
)
,

that are classically equivalent via the eom X + 1
2

√
λ
3 ϕ

2 = 0.
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Examples

L∞ for scalar fields

L
→ C∞(M)→ C∞(M)→

µ1(ϕ) = (−�−m2)ϕ µ3(ϕ1, ϕ2, ϕ3) = −λϕ1ϕ2ϕ3

L′

→ C∞(M)⊕ C∞(M)→ C∞(M)⊕ C∞(M)→

µ1(ϕ+X ) = (−�−m2)ϕ+X µ2(ϕ1+X1, ϕ2+X2) =
√

λ
3 (X1ϕ2+X2ϕ1+ϕ1ϕ2)

The chain map φ1: φ1(ϕ+ X ) = ϕ and φ1(ζ + Y ) = ζ does not affect the
vector space cohomology since the addition of the identity map to the
differential makes no difference to H•(L).

It remains to show that φ is an L∞-morphism. The choice for the

non-vanishing components to be just: φ2(ϕ1 + X1, ζ1 + Y1) =
√

λ
3 ϕ1Y1 can be

easily show to satisfy the conditions above.
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Examples

Quasi-isomorphism in YM

One can show the two formulations of Yang-Mills have the same
cohomology complex

Then one can construct an L∞-morphism between the two formulations
that states (in the coalgebra picture where the requirement analogous to
the conditions above is QBV ◦ Φ = Φ ◦ Q ′BV):

Φ(c) = c Φ(A) = A Φ(B+) = −F+

Φ(A†) = A† Φ(B†+) = 0 Φ(c†) = c†
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Summary
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Conclusion and Outlook

Summary

Connection of L∞ structures and field theory/Batalin-Vilkovisky formalism

Yang-Mills both in first and second order formalism as L∞ theories

The physical meaning of the equivalence classes induced by L∞
quasi-isomorphisms

Classical equivalence of Yang-Mills and scalar field theory formulations as
L∞ quasi-isomorphic theories

It is important to notice one does not need cyclic L∞-algebras to construct
quasi-isomorphisms indicating one can find equivalent theories even if one
does not have an action functional description
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