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m Batalin-Vilkovisky and L
m Yang-Mills

m L, quasi-isomorphisms
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BV and Loo

Batalin-Vilkovisky and L
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BV and Loo
o

BV

BV formalism

m Very general approach to the quantisation of classical field
theories

m Needed in cases of open gauge algebras
m Involves doubling the BRST field content

m This doubling introduces a natural symplectic structure =
Antibracket

m The BRST operator is extended to a homological vector field
that is Hamiltonian wrt this symplectic structure = Master
equation
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BV and Loo
@000

L~ -algebra

Deﬂnition [hep-th/9206084] Zwiebach; [hep-th/9209099] Lada, Stasheff

An Lo.-algebra (or homotopy Lie algebra) (L, ui) is a differential graded
commutative algebra with a set of higher products that are graded totally
antisymmetric multilinear maps
/,L,‘:|_><---><|_—>|_7 i € Np
5,—/
i-times

of degree 2 — i which satisfy the homotopy Jacobi identities:

Z ZX(G: ooy ) (=1 trsr (o @ys - s bo)s ot s -+ ho(m)) = O

jt+k=n o

I e L.
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BV and Loo
(o] lele)

L~ -algebra

Special L..-algebras

A cyclic Lo-algebra is an L.-algebra with a graded symmetric non-degenerate
bilinear pairing
(-, )L:LxL—=R

that satisfies the cyclicity condition:

(hy p1i(ly o pn )0 = (=) FR I D 5 15 g )
VieN.
A tensor product L..-algebra ([, /i;) is the natural L..-algebra induced by the

tensor product of an L..-algebra (L, ii) and a differential graded commutative
algebra (A, d).

Since a de Rham complex on a manifold M, (Q2°*(M),d), is a differential graded
commutative algebra its tensor product with an Lc-algebra (L, u;) will again
be an Lo-algebra (Q°*(M, L), u})
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BV and Loo
[e]e] lo)

L~ -algebra

Tensored algebras relevant for BV

Gauge algebra  Field theory algebra BV algebra
L L' =Q*(M,L) L=cCc®)) ol
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BV and Lo
oooe

L~ -algebra

Field Theory from L.,

m Action:

1
Spv[a] = —(a, fi(a,...,a));
o= 3 g gy o2
m BRST transformations:

1
QBVBI—Zﬂﬁ,’(a,...,a)

i>1
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Yang-Mills

Yang-Mills theory
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Yang-Mills
o
Definition

Setup

m smooth compact 4-dimensional manifold without boundary M
m Lie group G with metric Lie algebra (g, [, ], (-, )q)

m inner product on Q*(M): (a1, a2) = fM o1 A koo = induces
product on Q*(M, g)
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Yang-Mills
@00
Second order

Second order L., description

Spaces:
ce Ac Al e e
Q°(M, ) =% Q'(M, g) =2 @*(M, g) =% Q' (M, g)

Non-vanishing maps:

pi(c) =dc, p(A)=dxdA, (A" =dAT,
112(A1, Ar) = d * [A1, Ag] + [Ar, xdAs] + [Aq, *dAy],
all other possible u> are just Lie brackets,
13(Ar, Az, Az) = [A1, %[Az, As]] + [A2, %[As, A1]] + [As, *[A1, A2]]
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Yang-Mills
(o] lo}
Second order

Action

1 .
Sev[a] = Zm@,m(a,...,a))ﬁ, a=c+A+A +cf
i>0

fir:
/(A,d*dA) :/(dA,*dA>
iz
/(A,d*[A,A]+2[A,*dA]> :3/<dA,*[A,A]>
i3:

/M<A,3[A,*[A, Al = 3/M<[A, A, *[A, A])

Sclassic :/ 1<F7*F> F = dA+ 1[/47/4]
2 2
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Yang-Mills
ooe

Second order

All other possible combinations with non-vanishing pairings are:

<CT7 .U'Q(C7 C)>7 <AT7 /~L1(C)>7 <AT7 :U’2(A7 C)>7 <A7 :U’Q(ATa C)>7 <Cv /Jl(AT)>7 <C7 :U*Q(Cf CT))'

Combining into:
1
Sov = Sciassic + (AT, p1(c)) + (AT, (A, ©)) + §<CT,M2(67 <))

BRST transformations: Qeva = — > #/(a, - -, a).
For example take the ghost zero component:

— QA +0(c", AT) = d*dA+%d*[A,A]+[A7 *dA]+%[A,*[A, A]] = dxF+[A, %F]
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Yang-Mills
L Je]
First order

First order L., description

Spaces:

—d =(1+P4)+d =0+d
Q°(M, g) “=% Q2 (M, g)o (M, g) 2P0, 02 (M, gya03 (M, g) =2, 04 (M, g)

Non-vanishing maps:
pi(c) =dc, p(A+ B) = (PyB+ P,dA)+dP.B, u(A")=dA,
u2(A1 —+ Bl,A2 + Bz) = P+[A1, Az] + [Al, BZ] + [A27 Bl]7
u2(A+ B, AT + BT = [A, AT] + B, B

all other possible u» are just Lie brackets.

Here * induces the decomposition Q*(M, g) = Q2 (M, g) ® Q2 (M, g) via the
projectors P+ = (1 + %): Q4. (M,g) = P~Q*(M, g)
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Yang-Mills
o] ]
First order

Action

g

/M<A+B+,u1(A+B+)>:/M<A+B+,B++P+dA+dB+) :/MZ(dA, B.)+(By, B)

12:

/M<A+B+,u2(A+B+,A+B+)):/M<A+B+,P+[A,A]+2[A, B+]):/M3<B+,[A,A])
Sclassic = /M<F7 By) + %(B+, B.)

Integrating out B this action is classically equivalent to the second order
formulation.
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Loo quasi-isomorphism

Morphism

Morphism

We say a collection of multilinear, totally graded antisymmetric homogeneous
L™ — L’ of degree 1 — i, i € N, is an Loo-morphism between two

maps ¢; :
-algebras (L, 1) and (L, i') if they satisfy:

Z Z 1) X g, /1,...,/,,)¢k+1(uj(/0(1), .7/0(‘1'))7/0(‘/'_‘_1),.4.7/0(")) =
Jj+k=n o€Sh(j;n)
= > 3 > x(oihy oo )C(or by )%

ki+---+ki=n  o&Sh(ky,...,kj_1;n)

l ) "'7¢k( (kytee 4k 1+1)a"'7la(n)))

X /“Lj{(d)kl (IO'(I)a

If ¢1 induces an isomorphism of cohomologies

(= H;{(L,) it is called a
quasi-isomorphism. Quasi-isomorphisms correspond to physically equivalent

systems.
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Loo quasi-isomorphism
@00
Examples

Simple example for scalar fields

Take two actions:

S= / d*x (%@(—D — mz)cp — %@4)
M

s = /M d*x (%ap(—lﬂ — m2)<p + %XQ + %\/ngf) ,

that are classically equivalent via the eom X + %\/ggpz =0.
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Loo quasi-isomorphism
(o] lo}
Examples

Lo for scalar fields

- C¥(M) = C(M) —
() = (-0 — m*)p p3(p1, 02, 93) = —Ap1p203
m L
= C¥(M)® C®(M) = CZ(M)s CZ(M) —

p(p+X) = (—0-m)e+X  pa(p1+X1, pat+Xo) = \/%(X1<P2+X2<P1+<P1<P2)

The chain map ¢1: ¢1(¢ + X) = ¢ and ¢1(¢ + Y) = ¢ does not affect the
vector space cohomology since the addition of the identity map to the
differential makes no difference to H*(L).

It remains to show that ¢ is an L..-morphism. The choice for the

non-vanishing components to be just: ¢2(p1 + X1, + Y1) = \/ggol Y1 can be
easily show to satisfy the conditions above.
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Loo quasi-isomorphism
(ele] J

Examples

Quasi-isomorphism in YM

m One can show the two formulations of Yang-Mills have the same
cohomology complex

m Then one can construct an L..-morphism between the two formulations
that states (in the coalgebra picture where the requirement analogous to
the conditions above is Qpyv o ® = ® o Qfy):

®(c)=c d(A)=A ®(B) = —F;
d(AT) = A o(BlYy=0 o(ch)=c'
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Conclusion

Summary
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Conclusion
o
Conclusion and Outlook

Summary

m Connection of Lo, structures and field theory/Batalin-Vilkovisky formalism
m Yang-Mills both in first and second order formalism as L., theories

m The physical meaning of the equivalence classes induced by Lo
quasi-isomorphisms

m Classical equivalence of Yang-Mills and scalar field theory formulations as
Lo quasi-isomorphic theories

m It is important to notice one does not need cyclic L..-algebras to construct
quasi-isomorphisms indicating one can find equivalent theories even if one
does not have an action functional description
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